News

New sustainable graphene production developed at INL

New sustainable graphene production developed at INL

The rising demand for portable electronics, e-textiles, and IoT devices has driven the need for lightweight technologies and miniaturized energy storage solutions. Graphene-based nanomaterials are at the forefront of extensive research due to their chemical stability, high surface area, strength, flexibility, and superior thermal and electrical conductivity. Supercapacitors, known for their fast charge-discharge rates, long lifespan, and simple structure, are becoming essential for energy storage in electronics, electric vehicles, and biomedical devices. They operate by storing charges through the adsorption and desorption of ions at electrode interfaces, achieving power densities over 10,000 W/kg. Microsupercapacitors, which are smaller and lighter versions, are particularly suitable for portable and wearable electronics, offering even higher power densities. The high electrical conductivity and surface area of specific graphene materials make them ideal for these applications. However, current production methods present toxicity and scalability issues that have limited their widespread use. Additionally, the materials need to comply with the requirements of deposition techniques able to guarantee reasonable production throughput. Now, INL researchers have developed a sustainable approach to produce an electrically conductive, graphene-based paste suitable for fabricating flexible devices. The results are reported today in the journal Nano Energy, in a paper by INL researchers, in collaboration with the […]

Read more
INL researchers are integrating light and AI to advance nanotechnology

INL researchers are integrating light and AI to advance nanotechnology

‘What if the brains of future robots are powered by light?’ This was one of the questions INL researcher Bejoys Jacob has been trying to answer during the past years at INL. As artificial intelligence, also known as AI, continues to revolutionise society, scientists are exploring innovative ways to power the brains of future robots. Traditional computer architectures, such as the von Neumann architecture, demand substantial energy consumption to execute AI algorithms. In light of the increasing demand for AI tools and the global push for sustainable energy solutions, researchers are seeking alternative computational architectures inspired by the human brain. At INL, the focus has been on developing a revolutionary architecture powered by light. This ambitious project involves the creation of miniaturised light sources, detectors, and photonic interconnects for a novel photonic integrated circuit architecture. As part of this initiative, Bejoys, who is pursuing a PhD at INL, in the Ultrafast Bio- and Nanophotonics group, in collaboration with Charles III University of Madrid (UC3M), is developing nano- and micro-LEDs based on GaAs III-V semiconductor materials. These LEDs mimic neuronal activity through optical/electrical signals, paving the way for advanced brain-inspired computational architectures. Bejoys explains that “the devices developed through this research […]

Read more
INL researchers awarded funding to develop an automated sensor to detect emerging viruses

INL researchers awarded funding to develop an automated sensor to detect emerging viruses

Zoonotic infectious diseases, i.e. diseases that transmit from animals to humans, are on the rise, and the potential for a new pandemic is more significant than ever. It is imperative to develop advanced technologies capable of continuous monitoring to identify high-risk zones for pathogen transmission between animals and humans. This requirement is essential to mitigate the potential human, socio-political, and economic impact of pandemics. The global initiative ‘One Health’ advocates collaboration among human, animal, and environmental health professionals to address health challenges. Its goal is to comprehend and prevent zoonotic diseases, while fostering a holistic approach to global health. Although the European Parliament calls for continuous surveillance and harmonised data collection from animal farms, current practices fall short for continuous and automatic detection, limiting detection to specific and already known pathogens. FLUFET, which stands for ‘FLow detection of virUses by graphene Field Effect Transistor microarrays’, is the new EIC Pathfinder project with a goal to develop a novel approach for the detection of viruses. It will be the first automated sensor capable of continuously detecting a broad spectrum of viral targets, including unknown viruses. This revolutionary sensor, combining technologies and knowledge from different fields, such as graphene field effect transistors […]

Read more
INL researchers innovating in next-generation solar power

INL researchers innovating in next-generation solar power

Solar cells, also known as photovoltaic cells, directly convert sunlight into electricity. The most prevalent type, crystalline silicon photovoltaic cells, found in commercially available solar panels, benefit from extensive expertise and synergies with the microelectronics industry. Despite their cost competitiveness, silicon photovoltaic cells have limitations, such as poor sensitivity to low light, rigid modules, conservative aesthetics, and limited flexibility in dimensions. If photovoltaics are to be deployed in a larger number of applications, these limitations need to be addressed. The Nanofabrication, Optoelectronics, and Energy Applications (NOA) research group is exploring novel thin-film solar cell concepts – or next-generation photovoltaics – to enhance performance while meeting environmental standards. They are particularly focused on developing solutions that merge conversion efficiency, durability, and aesthetics for building-integrated photovoltaics (BIPV), targeting stakeholders in the construction industry. BIPV offers a practical means of integrating photovoltaic systems into buildings, potentially facilitating the installation of hundreds of gigawatts worldwide without the need for additional land. This approach aligns well with the current trend of urbanisation. Pedro Salomé, NOA’s group leader, elaborates “We are engaged in various projects, funded by Portuguese and European programmes, to devise solutions that overcome the challenges posed by conventional silicon modules. Most of our […]

Read more
A microfluidic platform that simulates human digestion

A microfluidic platform that simulates human digestion

In a recently published study, INL researchers developed an innovative microfluidic platform that is capable of replicating key human gastrointestinal processes, offering a game-changing tool for the assessment of newly-developed drugs and/or food supplements. The innovation combines a ‘Digestion-Chip’ and a ‘Gut-Chip’, each enabling sequentially the simulation of digestion through the gastrointestinal tract and the evaluation of intestinal permeability. The study ‘From mouth to gut: microfluidic in vitro simulation of human gastro-intestinal digestion and intestinal permeability’, introduces a miniaturised setup that allows studies of sample bioaccessibility and simplified bioavailability using minimal sample amounts. In addition, the outflow from the ‘Digestion-chip’ can be exposed to the cell-based Gut-Chip, which replicates the intestinal epithelium, using unprecedentedly low sample dilutions thus allowing the detection of ‘rare’ compounds. Both devices work in continuous flow requiring very little user interfacing. In this work, casein – a milk protein that is widely used as a supplement in sports nutrition – was tested as a model compound. And critically, the Gut-Chip can be used to evaluate intestinal permeability offering reference permeability values that are in line to those found using human ex vivo models. Miguel Xavier, one of the first authors of the research study adds “the […]

Read more
Detecting objects without any physical interaction – reality or science fiction?

Detecting objects without any physical interaction – reality or science fiction?

INL researchers have explored a fascinating quantum ability which lacks a classical explanation: the capacity to detect objects without traditional physical interaction. Rafael Wagner and Anita Camillini, INL PhD candidates, alongside the research group-leader Ernesto F. Galvão, have published a paper describing the revolutionary approach that challenges conventional concepts of detection. Imagine being able to identify something without actually touching it – similarly to diagnosis a hidden fracture without an X-ray or recognising a distant voice without hearing it directly. This study explores how quantum computers can achieve that, and detect objects without direct interaction. Rafael Wagner explains “It has been known for a long time that it is possible to detect things without interactions, as a result of the famous thought experiment introduced by Elitzur and Vaidman. They imagined an extreme situation where either there is a bomb in one of the arms of an interferometer, or there is no bomb.” Interferometers are tools used in many fields of science and engineering. The working principle of interferometry consists on splitting the light into two beams that travel different optical paths and are then combined to produce an interference pattern. Their scenario presents an unusual premise: within an interferometer setup, […]

Read more
Sadaf Almas, effective audit facilitation and continuous improvement initiatives

Sadaf Almas, effective audit facilitation and continuous improvement initiatives

We aim to shine a spotlight on the exceptional achievements of women at INL spanning different fields and career stages. Join us as we honour their accomplishments, share their stories, and ignite inspiration for the upcoming generation of female scientists. Meet Sadaf Almas. She works as a Quality systems Assistant in the Quality and Coordination unit at INL and she coordinates and inspects the core departments at INL to ensure the quality management systems consistency in terms of quality, validity, and reliability with study bases, facility-based and process-based approaches. Can you give us an update on what you’re currently working on? In my role within the Quality department, I play a crucial role in ensuring adherence to Good Laboratory Practice (GLP) standards, particularly in the context of Nanosafety laboratories. My primary responsibility revolves around facilitating GLP audits, employing principles established by the Organisation for Economic Co-operation and Development (OECD). First and foremost, I work closely with Nanosafety to develop comprehensive audit schedules aligned with OECD guidelines. This involves collaborating with INLers to ensure that all pertinent aspects of GLP are covered, from facility infrastructure to standard operating procedures (SOPs) and data management protocols. Before conducting audits, I review existing documentation […]

Read more
Is greenhouse farming releasing microplastics into water?

Is greenhouse farming releasing microplastics into water?

In a recent study conducted by INL researchers, in collaboration with University of Alcalá, Madrid, it has been revealed that greenhouse plastic cover films, commonly composed of polyethylene (PE), are releasing microplastics into the environment during their usage, significantly impacting ecosystems. Microplastics are tiny plastic particles that can result from commercial product development or from the breakdown of larger plastics, and may take hundreds or thousands of years to decompose. Microplastics, defined as plastic particles smaller than 5 millimeters, and nanoplastics, typically smaller than 1 micrometre, have been identified in various ecosystems, including water bodies, soil, and even food and beverages. Their ability to penetrate biological barriers and interact with organisms raises significant concerns about their long-term impacts on biodiversity and human health. The study was conducted over a six-month period in Almeria, Spain, where extensive greenhouse farming is practiced, to better understand the consequences of plastic degradation. Most vegetables grown in these greenhouses are sown and harvested within 6 months, and water analysis was performed at several time points. Researchers from the Water Quality research group at INL and the University of Alcalá applied advanced characterisation techniques to assess the chemical fingerprint, size distribution, and concentration of plastic particles released […]

Read more
Nanotechnology for predicting and preventing seizures in neurological diseases

Nanotechnology for predicting and preventing seizures in neurological diseases

INL researchers are part of the European consortium CROSSBRAIN – a groundbreaking project aimed at developing microbots to predict and prevent seizures in individuals suffering from conditions such as epilepsy or Alzheimer’s disease. Within the complexity of our brains, neurons communicate through various signalling mechanisms, including chemical, thermal, and electrical changes. Many neurological disorders affecting the brain originate from abnormal electrical activity, leading to conditions such as epileptic seizures. When these abnormalities in electrical activity occur, prompt identification and swift intervention are vital for effective treatment. However, current technologies for monitoring and modulating brain activity with precision are very limited. CROSSBRAIN brings together leading researchers from across Europe to develop a new solution for predicting and preventing seizures in neurological conditions. Coordinated by researchers from Tor Vergata University of Rome, the consortium aims to create micro-sized robots that can be implanted in our brains. By combining cutting-edge computing and nanomaterials, CROSSBRAIN will enable precise modulation of brain tissue using various stimulation methods, including electrical, mechanical, thermal, and optical principles. The microbots, powered wirelessly by a compact central unit, will then be implanted through blood vessels, with the capability to deliver genetic material. Once integrated into the network of neurons, these […]

Read more
1 3 4 5 6 7 40