UT-BORN-PT

INL Cluster

Unconventional Thermoelectrics Based on Self-Organized Binary Nanocrystal Superlatices

Alongside alternative clean energy sources, energy recovery and conversion will play an important role in addressing future technologies, especially for autonomous devices. Thermoelectric devices that convert temperature gradients into electric power and vice versa have been actively investigated with the aim of enhancing existing technologies for heat/power recovery and conversion. They are reliable, non-polluting, require minimal maintenance, and can be operated over a wide range of temperatures. If it were not for its currently low efficiency, thermoelectric energy conversion could revolutionary replace thermomechanical conversion in many applications. The performance of thermoelectric materials is expressed by the dimensionless figure-of-merit, zT, which is about 1.2 for materials currently used in thermoelectric devices. For wide adoption, the zT needs to reach a value of 3, a goal that has been pursued for over 50 years. Recent record zT values approaching 2 are driven in part by nanocrystals self-precipitated in bulk, even though control and understanding of nanocrystal formation remain elusive in these systems. This project aims at significantly increasing zT values of thermoelectrics by nanostructuring thermoelectric materials into nanocrystal solids that can offer high electrical conductivity while dramatically lowering the thermal conductivity. We propose an approach for creating completely new high-zT thermoelectrics via bottom-up assembly of thermoelectric NCs.

Total Eligible Budget

98,881.00 €

INL Eligible Budget

49,958.00 €

Total Funding

98,881.00 €

INL Funding

49,958.00 €

Start Date

01-11-2018

End Date

30-04-2020

Grant Agreement Id

UTAP-EXPL/CTE/0050/2017

Funding Agency

FCT

Funding Framework

FCT

INL Role

Coordinator

Approval Date

03-02-2018

Intervention Region

North of Portugal